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peut &re tent6 de le faire, g6n6ralisant ainsi rapidement 
le cas tridimensionnel...) au volume total d'un empile- 
ment de n-sph6res, la somme des volumes de ces der- 
ni6res, provoque une erreur importante (plusieurs or- 
dre de grandeur) m~me pour des valeurs encore faibles 
de n. 

Je remercie vivement MM. J. Berthou, H. Lifchitz, 
A. Rimsky, A. Soulard et Melle E. Volpe pour leurs 
interventions, toujours appr6ci6es, au cours de ce tra- 
vail. 
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Effects of Misplaced Atoms on the Residual R2 in Space Groups of Higher Symmetry 
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In space groups of symmetry higher than P1 misplacement of a single atom implies the misplacement of 
all those in the same Wyckoff position, and hence the effect on the residual is larger than in P1. 'Exact' 
values of the residual R2 are obtained, with explicit allowance for dispersion. 

1. Introduction 

Wilson (1950) considered the values obtained for what 
was then called the reliability index when none of the 
atoms was in its right position. Because of the different 
degrees of dispersion of the intensity distribution func- 
tions different values were obtained for space groups 
P1 and P]'. Later Wilson (1969) obtained expressions 
for the value of three residuals when only one atom 
and those related to it by symmetry were misplaced. 
Second approximations were obtained for the space 
groups P1 and PT, and a first approximation for the 
space group P2/m. He speculated that space groups of 
higher symmetry would lead to results of the same type, 
but with larger numerical coefficients. Recently there 
has been renewed interest in the subject (e.g. Parthasa- 
rathy & Parthasarathi, 1972; Lenstra, 1974 and private 
communications; Wilson, 1974b ; Parthasarathy, 1975). 
Lenstra, in particular, has approached the subject in a 
new way, from the coincidence of vectors in the Patter- 
son map, instead of basing his calculations on the inten- 
sity distribution functions. The present paper extends 
the work systematically to space groups of higher sym- 
metry; the approach is through the expressions for the 
structure factors in International Tables for X-ray 
Crystallography (1952). 

In general, the speculations of Wilson (1969) about 
space groups of higher symmetry are confirmed. In 
particular, if there are several non-equivalent misplaced 

atoms R2 is given by 

( 1 ) R z = 2 Z - l ~  p~f~ (1) 
i 

for non-centrosymmetric space groups, and by 

(T)R2= 8(32") -1 ~ Pif~ (2) 
i 

for centrosymmetric space groups, where Z is the sum 
of the squares of the moduli of the scattering factors of 
all the atoms, equal to the mean intensity of reflexion 
(Wilson, 1942), pC and f~ are respectively the multipli- 
city and the modulus of the scattering factor of the ith 
misplaced atom, and the summation is over all mis- 
placed atoms in the asymmetric unit. These expressions 
are in each case first approximations, valid when the 
scattering power of the misplaced atoms is small com- 
pared with the total scattering power of the unit cell; 
'exact' expressions, involving also sums of fourth 
powers of the scattering factors and making allowance 
for dispersion, are given in (20) and §3. 

A recent paper by Parthasarathi & Parthasarathy 
(1975) appears at first sight to be dealing with the same 
questions, but there are two important differences. 
First, they use a scaling factor that makes the average 
intensity for a partial structure equal to the average 
value for the full structure when some of the atoms are 
omitted because, for example, their positions are un- 
known. (The relation of this procedure to the scaling 
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of intensities is touched on in §4.) Secondly, they in- 
clude the fourth-power terms for some atoms (the 
'heavy' atoms in their application) and omit them for 
the rest (the 'light' atoms). This procedure is justifiable 
when there are many atoms in the second group and 
few in the first, but in effect they have set themselves a 
different problem, and the solution is correspondingly 
different. 

Notation 
The notation of this paper is similar to that of the 

author's previous work, but a few changes are intro- 
duced to avoid multiplicity of subscripts. In order to 
include dispersion bold-face type is used for complex 
scattering factors and signed or complex structure 
factors. The sum of the squares of the moduli of the 
scattering factors is denoted by Z, as before, but the 
sum of the squares of the complex scattering factors is 
denoted by S. It should be noted that the modulus of 
S is equal to Z only if all atoms have the same phase 
angle. To a first approximation 

s = I S l -  z [ 1  - 2o-~(0)], (3) 

where a(O) is the standard deviation (square root of the 
variance) of the phase angle (6) of the scattering fac- 
tors. Also, the sum of the fourth powers of the moduli 
of the scattering factors is represented by T instead 
of by Z4. 

2. General calculation 

Suppose that there are two structures of the same sym- 
metry, in which there is a common part with structure 
factor G, and a non-common part with structure fac- 
tors H1 and H2 respectively. The total structure factor 
of the first structure is then 

F1 = G + H i ,  (4) 

and the corresponding intensity is 

I~=F1F~=G2+GH~+G*HI+H~. (5) 

The first and fourth terms are always positive, but the 
second and third have randomly varying phases or 
signs for different reflexions. The mean value of I~, 
averaged over a range of general reflexions hkl, is thus 

(/1) = (G2) + (H~) + ~ 0  (6) 

= So + X1, (7) 

where Z0 and Zi are the sums of the squares of the 
moduli of the scattering factors of the common and 
non-common parts of the structure. The value and 
mean value oflE, the intensity of reflexion for the second 
structure, are given by analogous expressions with 2 
replacing 1. The difference in the intensities for the two 
structures is 

I I - IE=H~.-H] +(H1-Hz)G* +(H~'-H~)G , (8) 

so that 

(I1-12) E= H 4-  2HEH~ + H 4 
+ (H~- 2HIHE + H~ z) (G*) E 
+ [(H~) 2 -  2H~'H~ + CH~)2]G 2 
+ 2(H~ 2 -  HaH~-  H~H2 + H~)G 2 
+terms averaging to zero. (9) 

The mean value of terms like G 2 is the corresponding Z. 
The mean value of terms like G 2 depends on whether 
or not the structure is centrosymmetric. If centrosym- 
metric, an argument similar to that of Wilson (1942) 
shows that the average is S, the sum of the squares of 
the complex scattering factors fE, whereas if it is non- 
centrosymmetric the average is zero, so that 

(FZ)=Z,  (10) 

( F 2 ) = ( k -  1)S, (11) 

where k has the value 1 for the general reflexions of 
non-centrosymmetric space groups and the value 2 for 
centrosymmetric. (For zones and rows of reflexions the 
symmetry of the corresponding projection determines 
the value of k.) In (10) and (11) F represents F1,F2, G, 
Ha,HE as required, suitable subscripts being used to 
distinguish the corresponding values of Z and S. 

The mean value of the fourth powers of structure 
factors has been discussed by, for example, Foster & 
Hargreaves (1963) and Wilson (1951, 1976). In the 
present notation 

(Fg)=2Z2+(k-1)S2-  ~ [(1 +k)p2-q~]f 4, (12) 
l 

where p~ is the multiplicity of the Wyckoff position 
occupied by the ith atom, q~ is an integer depending on 
the space group and the Wyckoff position (actually the 
mean value of the fourth power of the trigonometrical 
structure factor for the Wyckoff position in question), 
and the summation is over the atoms of the asymmetric 
unit. Foster & Hargreaves point out that the space 
groups of the triclinic, monoclinic and orthorhombic 
systems can be arranged in seven categories for which 
the values ofp  and q are the same (within trivial factors 
depending on the lattice; Fdd2 and Fddd do not fit in 
with the scheme). The fundamental classification is 
presumably the point group, though T, 2 and m all have 
p = 2 and q = 6 for the general position. Equality of the 
q's holds also within each crystal class of the trigonal 
system, but there are many exceptions in the tetragonal, 
hexagonal (sensu stricto) and cubic systems. Empirical- 
ly, one might generalize to say that if the space group 
contains no single symmetry element of multiplicity 
greater than three, the value of q depends only on the 
point group, whereas if there is a symmetry element of 
multiplicity of four or six (such as d in Fdd2 and Fddd 
or 4a in P41) a special calculation is necessary. The 
values of q have been tabulated for the general posi- 
tions of many space groups by Wilson (1975b); for 
those common to the two listings they are equivalent 



A. J. C. W I L S O N  55 

to the coefficient of S(4) in Table 1 of Foster & Har- 
greaves. For the space groups P1 ( p = q =  1) and PT 
(p=2,  q=6),  (12) reduces to the familiar forms (Wil- 
son, 1951) 

(1)(I2) = 22` 2 -  T 
and 

ff )(I2)= 2272 + S z -  3 T, 

= 327  2 -  3 T  

(13) 

(14) 

(15) 

in the absence of dispersion. 
By the use of (10), (11) and (12) the average value of 

the square of the difference of the intensities from the 
two structures can be found. From (9), (10) and (11) 

((It-Iz)2) = (H4) - 227~2̀ 2 + (H~) 
+ ( k -  1)Sg'(S~ + $2) 
+ (k - 1)So(St + S~) 
+ 22`o(27t + 272), (1 6) 

where the subscript 0 refers to the atoms common to 
both structures, 1 to the atoms unique to the first 
structure, and 2 to the atoms unique to the second 
structure. Symbols without subscript will refer to the 
complete structure l, so that, for example, 

27 = 270 + X~. (1 7) 

From (12) the residual becomes 

R2 = ((It - /2)2)/(Ia 2) (18) 

= {22`0(27t + 272)+ 2(27~-27vY'-,2 + Z~)+(k-  1) (S~ 

+ S~)+(k-1)[(St + S2)S~ ÷ ( S t  + S;)S0] 

- ~(1 + 2) [(I + k)p~-q,]f~} 
l 

+{22`2+(k-1)$2-~[(1 +k)p~-q~]f~} (19) 
l 

= {2X(Zt + Zz)-2Z2(2X~-Xz)+(k-  1) (S~ 2 + S 2) 
+ ( k -  1) [(S~ + Sz)S* + ( S t  + S ~ ) S -  (2S~ + SxS~' 
+ S t S 2 ) ] -  ~ (t+2)[(1 +k)p~-q~]f~} 

i 

+ {22`2 + ( k - 1 ) $ 2 -  ~ [(1 +k)p~-qt]f~} (20) 
i 

from (17). If only a few atoms are misplaced the im- 
portant terms are those containing 27, S and S; the 
residual is then 

R2= {22`(27t + 272) + ( k -  1) [(St + S2)S* + ( S t  + S~)S)]} 
+ {2272+(k=- 1)$2}, (21) 

which reduces to (1) and (2) when dispersion is neglect- 
ed. 

3. Special cases 

The general expression for R2 can be simplified in 
various ways, depending on the assumptions that can 
plausibly be made about the atomic positions and about 
the way in which the calculations are handled if, for 
example,/1 relates to the observed intensities and 12 to 

the calculated. Those considered worth special mention 
are: 

(i) All the atoms occupy the same Wyckoff position. 
(ii) There is no appreciable dispersion. 
(iii) The structures 1 and 2 are different arrangements 

of the same atoms. 
(iv) The structures have no common part, so that 

2`o and To are zero. 
(v) No assumption is made about the positions of 

the atoms peculiar to structure 2, and 2"2 and 7"2 are 
put equal to zero. 

It is, of course, possible for two or more of these 
possibilities to occur together; there is, for example, 
nothing incompatible in any combination of the first 
four. 

3.1 All atoms in the same Wyckoff position 
If all atoms are in the general position, or in the same 

special position with different parameters, p and q 
have the same value for all atoms, and can be taken 
outside the summation signs. Equation (20) then 
reduces to 

R2= {2S(X1 + 272)- 22`2(22`,- 272) + (k - 1) [S~ + S~] 
+ ( k -  1) [(S, + S2)S* +(St +SDS 
- (2S~ +S,S~ + S I S 2 ) ] -  [(1 +k)p-q/p] (7'1 + T2)} 
+ {227 2 + ( k -  1)$2- [(1 + k)p-q/p]r} .  (22) 

The situation of having all atoms in the general posi- 
tion is very common among organic structures, but 
much less common among inorganic and metallic 
structures. 

3.2 Dispersion negligible 
If there is no appreciable dispersion it is unnecessary 

to distinguish between S, S*, and 2`, so that (20) be- 
comes 

R2= {2kX(S~ + 2`2)- ( k -  1)2`~- 2(k + 1)X12`2 
+ (k  + 1)27~-~(t+2)[(1 +k)p2i-q,]f~} 

l 

+{(1 +k)2` 2 -  ~ [(1 +k)p~-q,)f~}, (23) 
l 

or, if all the atoms have the same Wyckoff position, 

R2= {2kZ(2`x + ~'2)-  ( k -  1)2`~- 2(k + 1)2`,2`2 
+ (k  + 1)Z~-  [(1 + k)p-q/p] (7"1 + 7"2)} 
-{(1  +k)2`2-  [(1 +k)p-q/p]r} .  (24) 

3.3 Different arrangements of the same atoms 
If structures I and 2 consist of the same numbers and 

kinds of atoms in different arrangements the values of 
27~ and X2; S~ and Sz; and 7"1 and T2 are equal, so that 
(20) becomes 

R2 = {4272`t - 2S~ + 2 ( k -  1) (StS*+ S iS  - S~) 
- ~ (, +2, [(1 + k)p~-q,]f~} 

l 

+ {2XZ + ( k - 1 ) S Z -  ~ [(l +k)p~-qt]f4} . (25) 
1 
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If, in addition, the atoms all occupy the same Wyckoff 
position, 

R2= {4ZZ' t-  2Z~ + 2 ( k -  1) (SIS* + S~ 'S-  S~) 
-2[(1 + k)p-q/p]T~} 
• - {2Z '2 + ( k -  1)SZ- [(1 + k )p -q /p]T} ,  (26) 

with a further obvious simplification if dispersion can 
be neglected. 

3.4 No common part 
If the structures have no common part X0, So and So 

are zero and N, S and S are equal to Z'l, $1 and $1. The 
expression for R2 is then given by (19) with the terms 
in Z'0, So and So omitted and subscripts 1 added in the 
denominator. If, in addition, the structures are dif- 
ferent arrangements of the same atoms, the expression 
reduces to 

R2= {2Z'~ + 2 ( k -  1)S~- 2 ~ [(1 + k)p~-qi]f~} 
l 

- { 2 ~ + ( k - 1 ) S ~ - ~ [ ( l  +k)p~-q,]f4}.  (27) 
i 

If, further, all atoms are in the same Wyckoff position, 

R2 = { 2 ~  + 2 ( k -  1)S~- 2[(1 + k ) p - q / p ] r  d 

-. {2Z'~ + ( k -  1)S~-[(1 + k)p-q/p]T~ }. (28) 

Wilson (1974, 1975a) has given the values of R2 for 
this case for the space groups P 1 and PT (for which 
p, q and k are 1, 1, 1 and 2, 6, 2 respectively), not 
taking dispersion into account. Equation (28) correctly 
reduces to his equations (12) and (14) after the ap- 
propriate substitutions. 

3.5 Atoms peculiar to second structure omitted 
It may be thought advisable to leave the atoms 

peculiar to one structure out of consideration if, for 
example, / i  relates to the observed intensities, and at 
the current stage of refinement the positions of some 
atoms are unknown. The calculated intensities/2 will 
then relate to only the common part of the two struc- 
tures, and N2, S2, 5'2 and Tz will be zero. Equation (20) 
becomes 

R2= {2Z'Z', + ( k -  1) (SIS* + S~ 'S-  S~) 
- ~ c1, [(1 + k)p~-q,] f  4} 

i 
- { 2 Z 2 + ( k  - 1)S 2 -  ~ [(1 +k)p~-q,]f4}.  (29) 

l 

This is approximately half the value of R2 given by (25), 
in which the atoms peculiar to the second structure are 
put in the wrong positions. From the point of view of 
reducing the residual it is better to omit than to mis- 
place - a conclusion in accordance with common sense. 

4. Problems of scaling 

In the preceding discussions it has been assumed that 
G,/-/i and/-/2 and the corresponding intensities are all 
on the same 'absolute' scale. In practice this will not al- 
ways be the case. I f l l  is the observed intensity and/2 the 
calculated, the scaling factor implicit in /2 should be 
adjusted at each stage of refinement so that the aver- 
age values are equal - this has been discussed in more 
detail elsewhere (Wilson, 1974a; Lomer & Wilson, 
1975). In the type of problem discussed here, however, 
for which some atoms may not be included in the cal- 
culation of I2, the best procedure will probably be to 
adjust the scaling so that 

(I1) = ( a 2 ) +  z2; (27) 

one thus takes into account the actual average of the 
calculated intensity for the atoms whose positions are 
supposed known, and the average to be expected on 
statistical grounds for the atoms whose positions are 
unknown. The procedure of Parthasarathi & Parthasa- 
rathy (1975), following Srinivasan & Ramachandran 
(1965), goes some way towards this, but is not identical 
with it. Refining the scaling factor by least squares 
would seem to be unjustifiable, since the value obtained 
is known to be biased by 'defects in the model', which 
missing or misplaced atoms certainly are. It would be 
easy, but tedious, to elaborate on the consequences of 
doing so. Some extreme examples are given by Wilson 
(1974b). 
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